Abstract

This paper addresses the annual energy storage requirements of small islanded electricity systems with wind and photovoltaic (PV) generation, using hourly demand and resource data for a range of locations in New Zealand. Normalised storage capacities with respect to annual demand for six locations with winter-peaking demand profiles were lower for wind generation than for PV generation, with an average PV:wind storage ratio of 1.768:1. For two summer-peaking demand profiles, normalised storage capacities were lower for PV generation, with storage ratios of 0.613:1 and 0.455:1. When the sensitivity of storage was modelled for winter-peaking demand profiles, average storage ratios were reduced. Hybrid wind/PV systems had lower storage capacity requirements than for wind generation alone for two locations. Peak power for storage charging was generally greater with PV generation than with wind generation, and peak charging power increased for the hybrid systems. The results are compared with those for country-scale electricity systems, and measures for minimising storage capacity are discussed. It is proposed that modelling of storage capacity requirements should be included in the design process at the earliest possible stage, and that new policy settings may be required to facilitate a transition to energy storage in fully renewable electricity systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call