Abstract

Since last several years, infection caused by Staphylococcus aureus is challenging to cure using conventional antibiotics. The organism is a Gram-positive bacterial pathogen that can cause serious diseases not only in humans but also in animals, such as various skin infections, pneumonia, endocarditis and toxin shock syndrome. This bacterium causes such diseases by producing macromolecules such as hemolysins, enterotoxins, proteases and toxic shock syndrome toxin (TSST-1). This organism had developed the multidrug resistance by acquiring MEC-A gene. This account for made organism to come into the category of Superbug. Several studies showed that, the toxin production is induced by AIP and RAP via the phosphorylation of TRAP. TRAP is a 21 kDa protein and was believed to be associated with the membrane via SvrA Phosphoamino acid analysis revealed that TRAP is histidine phosphorylated in a signal transduction pathway that is activated by RAP. The inhibition of TRAP could be done by RIP (RNAIII-inhibiting peptide). The structure for RIP is still undiscovered to be used as inhibitor.Present work has been carried out to get the structural insight with various online and offline homology modeling techniques such as SWISS-MODEL, MODBASE, GENO3D, CPHmodels and I-TASSER for getting unknown structural information target of RNAIII-activating protein from Staphylococcus aureus strain MRSA252 origin for their future exploration as a target in drug discovery process against MRSA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.