Abstract

The high temperature ignition of C1−C4 primary alcohols, methanol, ethanol, n-propanol, and n-butanol, is studied behind reflected shock waves. The experiments are carried out at pressures of 2, 10, and 12 atm with argon/oxygen ratios of 10, 15, and 20 under lean, ϕ = 0.5, stoichiometric, ϕ = 1, and rich, ϕ = 2, conditions between 1070 and 1760 K. It is observed that the ignition delay time data for ethanol, n-propanol, and n-butanol collapse under conditions of constant equivalence ratio, pressure, and dilution. The ignition delay times of methanol are comparable with the other alcohols but show a slightly lower activation energy than the other fuels. The observed collapse of the ignition delay times for the four alcohols under lean-to-stoichiometric conditions is comparable with recent observations by Veloo et al. (Veloo, P. S.; Wang, Y. L.; Egolfopoulos, F. N.; Westbrook, C. K. Combust. Flame 2010, 157, 1989−2004) that over a range of equivalence ratios less than one, methanol, ethanol, and n-butanol h...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.