Abstract

Two widely used in vitro cell culture models, human liver HepG2 cells and human colon Caco2 cells, and flow cytometry techniques were evaluated as tools for rapid screening of potential genotoxicity of food-related nanosilver. Comparative genotoxic potential of 20 nm silver was evaluated in HepG2 and Caco2 cell cultures by a flow cytometric-based in vitro micronucleus assay. The nanosilver, characterized by the dynamic light scattering, transmission electron microscopy and inductively coupled plasma-mass spectrometry analysis, showed no agglomeration of the silver nanoparticles. The inductively coupled plasma-mass spectrometry and transmission electron microscopy analysis demonstrated the uptake of 20 nm silver by both cell types. The 20 nm silver exposure of HepG2 cells increased the concentration-dependent micronucleus formation sevenfold at 10 µg ml(-1) concentration in attached cell conditions and 1.3-fold in cell suspension conditions compared to the vehicle controls. However, compared to the vehicle controls, the 20 nm silver exposure of Caco2 cells increased the micronucleus formation 1.2-fold at a concentration of 10 µg ml(-1) both in the attached cell conditions as well as in the cell suspension conditions. Our results of flow cytometric in vitro micronucleus assay appear to suggest that the HepG2 cells are more susceptible to the nanosilver-induced micronucleus formation than the Caco2 cells compared to the vehicle controls. However, our results also suggest that the widely used in vitro models, HepG2 and Caco2 cells and the flow cytometric in vitro micronucleus assay are valuable tools for the rapid screening of genotoxic potential of nanosilver and deserve more careful evaluation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.