Abstract
BackgroundThe study of rodent malaria parasites has significantly advanced our understanding of malaria parasite biology and host responses to parasite infections. There are four well-characterized rodent malaria parasite species (Plasmodium yoelii, P. chabaudi, P. berghei, and P. vinckei). Each species also has multiple strains that cause different disease phenotypes. P. yoelii nigeriensis N67C and N67, two isogenic parasites, are particularly intriguing as they differ in virulence and incite different immune responses in mice. The genome of the N67 parasite has been assembled recently, but not that of N67C. This study used PacBio HiFi sequencing data to assemble the N67C genome, compared the two genomes, and performed RNA sequencing to identify polymorphisms and differentially expressed genes (DEGs).ResultsThe assembled N67C parasite genome consisted of 16 scaffolds and three contigs of approximately 22.5 Mb with 100% and 96.6% completeness based on well-characterized single-copy orthologs specific to the Apicomplexa phylum and the Plasmodium genus, respectively. A comparison between the annotated N67C and N67 genomes revealed 133 single nucleotide polymorphisms (SNPs) and 75 indels. Among the polymorphic sites, an S (N67) to N (N67C) amino acid substitution at position 114 (S114N) in the dihydrofolate reductase-thymidylate synthase (DHFR-TS) confers resistance to pyrimethamine in mice. Additionally, 60 differentially expressed single-copy genes (DEGs) were detected after comparing mRNA levels between the two parasites. Starting with the predicted and annotated 5,681 N67C and 5,749 N67 genes, we identified 4,641 orthogroups that included at least one gene from the four P. yoelii parasites (N67, N67C, 17X, and YM), whereas 758 orthogroups showed subspecies or strain-specific patterns.ConclusionThe identification of polymorphic sites between the N67 and N67C genomes, along with the detection of the DEGs, may provide crucial insights into the variations in parasite drug responses and disease severity between these two isogenic parasites. The functional characterization of these genetic differences and candidate genes will deepen our understanding of disease mechanisms and pave the way for developing more effective control measures against malaria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.