Abstract

IncQ-type plasmids have become important vectors in the dissemination of blaGES among different bacterial genera and species from different environments around the world, and studies estimating the occurrence of Guiana extended-spectrum (GES)-type β-lactamases are gaining prominence. We analyzed the genetic aspects of two IncQ1 plasmids harboring different blaGES variants from human and environmental sources. The blaGES variants were identified using polymerase chain reaction (PCR) in Aeromonas veronii isolated from hospital effluent and Klebsiella variicola isolated from a rectal swab of a patient admitted to the cardiovascular intensive care unit in a different hospital. Antimicrobial-susceptibility testing and transformation experiments were performed for phenotypic analysis. Whole-genome sequencing was performed using Illumina and Oxford Nanopore platforms. The comparative analysis of plasmids was performed using BLASTn, and the IncQ1 plasmids showed a high identity and similar size. A. veronii harbored blaGES-7 in a class 1 integron (In2061), recently described by our group, and K. variicola carried blaGES-5 in the known class 1 integron. Both integrons showed a fused gene cassette that encodes resistance to aminoglycosides and fluoroquinolones, with an IS6100 truncating the 3′-conserved segment. The fused genes are transcribed together, although the attC site is disrupted. These gene cassettes can no longer be mobilized. This study revealed a mobilome that may contribute to the dissemination of GES-type β-lactamases in Brazil. Class 1 integrons are hot spots for bacterial evolution, and their insertion into small IncQ-like plasmids displayed successful recombination, allowing the spread of blaGES variants in various environments. Therefore, they can become prevalent across clinically relevant pathogens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.