Abstract

BackgroundThe chondrichthyan or cartilaginous fish (chimeras, sharks, skates and rays) occupy an important phylogenetic position as the sister group to all other jawed vertebrates and as an early lineage to diverge from the vertebrate lineage following two whole genome duplication events in vertebrate evolution. There have been few comparative genomic analyses incorporating data from chondrichthyan fish and none comparing genomic information from within the group. We have sequenced the complete Hoxa cluster of the Little Skate (Leucoraja erinacea) and compared to the published Hoxa cluster of the Horn Shark (Heterodontus francisci) and to available data from the Elephant Shark (Callorhinchus milii) genome project.ResultsA BAC clone containing the full Little Skate Hoxa cluster was fully sequenced and assembled. Analyses of coding sequences and conserved non-coding elements reveal a strikingly high level of conservation across the cartilaginous fish, with twenty ultraconserved elements (100%,100 bp) found between Skate and Horn Shark, compared to three between human and marsupials. We have also identified novel potential non-coding RNAs in the Skate BAC clone, some of which are conserved to other species.ConclusionWe find that the Little Skate Hoxa cluster is remarkably similar to the previously published Horn Shark Hoxa cluster with respect to sequence identity, gene size and intergenic distance despite over 180 million years of separation between the two lineages. We suggest that the genomes of cartilaginous fish are more highly conserved than those of tetrapods or teleost fish and so are more likely to have retained ancestral non-coding elements. While useful for isolating homologous DNA, this complicates bioinformatic approaches to identify chondrichthyan-specific non-coding DNA elements

Highlights

  • The chondrichthyan or cartilaginous fish occupy an important phylogenetic position as the sister group to all other jawed vertebrates and as an early lineage to diverge from the vertebrate lineage following two whole genome duplication events in vertebrate evolution

  • Relatively species-poor by comparison to their osteichthyan relatives (~970 species of chondrichthyan, ~55,600 species of bony vertebrates [1]), they occupy an important phylogenetic position as the sister-group to all other jawed vertebrates and as one of the first lineages to diverge after the two rounds of whole genome duplications that occurred early in ver

  • If the larger size of the Horn Shark genome is due to an expansion of repetitive DNA, this is clearly not reflected in the overall size of the Hoxa cluster

Read more

Summary

Introduction

The chondrichthyan or cartilaginous fish (chimeras, sharks, skates and rays) occupy an important phylogenetic position as the sister group to all other jawed vertebrates and as an early lineage to diverge from the vertebrate lineage following two whole genome duplication events in vertebrate evolution. The Chondrichthyes (cartilaginous fish) are one of the three extant major clades of jawed vertebrates and comprise two sister-groups; the elasmobranchs (sharks, skates and rays) and the holocephalans (chimeras and ratfish Figure 1). Relatively species-poor by comparison to their osteichthyan (bony vertebrate) relatives (~970 species of chondrichthyan, ~55,600 species of bony vertebrates [1]), they occupy an important phylogenetic position as the sister-group to all other jawed vertebrates and as one of the first lineages to diverge after the two rounds of whole genome duplications that occurred early in ver-.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.