Abstract

We obtained two novel draft genomes of type Zobellia strains with estimated genome sizes of 5.14 Mb for Z. amurskyensis KMM 3526Т and 5.16 Mb for Z. laminariae KMM 3676Т. Comparative genomic analysis has been carried out between obtained and known genomes of Zobellia representatives. The pan-genome of Zobellia genus is composed of 4853 orthologous clusters and the core genome was estimated at 2963 clusters. The genus CAZome was represented by 775 GHs classified into 62 families, 297 GTs of 16 families, 100 PLs of 13 families, 112 CEs of 13 families, 186 CBMs of 18 families and 42 AAs of six families. A closer inspection of the carbohydrate-active enzyme (CAZyme) genomic repertoires revealed members of new putative subfamilies of GH16 and GH117, which can be biotechnologically promising for production of oligosaccharides and rare monomers with different bioactivities. We analyzed AA3s, among them putative FAD-dependent glycoside oxidoreductases (FAD-GOs) being of particular interest as promising biocatalysts for glycoside deglycosylation in food and pharmaceutical industries.

Highlights

  • IntroductionRed seaweeds (Rhodophyceae) produce sulfated galactans, such as agar and carrageenan

  • Seaweeds are a rich source of bioactive compounds with regard to polysaccharides.Red seaweeds (Rhodophyceae) produce sulfated galactans, such as agar and carrageenan

  • Type strains Z. amurskyensis KMM 3526Т and Z. laminariae KMM 3676Т were isolated from seawater (Amur Bay, Vladivostok, Russia) and brown alga Laminaria japonica (Troitsa Bay, Zarubino, Russia), respectively, and validly described by Nedashkovskaya et al [33]

Read more

Summary

Introduction

Red seaweeds (Rhodophyceae) produce sulfated galactans, such as agar and carrageenan. Non-sulfated polysaccharides, mainly laminarans and alginates, are isolated from brown seaweeds. These polysaccharides are being actively studied due to their pharmacological anti-inflammatory, antioxidant, antiviral, antitumor, immunomodulatory, anticoagulant, hypolipidemic, and prebiotic activities [1,2]. Physical-chemical properties and biological activities of their derivatives are of great interest for study. Previous works showed they have the potential to be used as bioactive molecules and functional materials in food, pharmaceutical, and cosmetic industries [3,4,5]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.