Abstract

BackgroundNAC domain transcription factors are important transcriptional regulators involved in plant growth, development and stress responses. Recent studies have revealed several classes of NAC transcriptional factors crucial for controlling secondary cell wall biosynthesis. These transcriptional factors mainly include three classes, SND, NST and VND. Despite progress, most current analysis is carried out in the model plant Arabidopsis. Moreover, many downstream genes regulated by these transcriptional factors are still not clear.MethodsIn order to identify the key homologue genes across species and discover the network controlling cell wall biosynthesis, we carried out comparative genome analysis of NST, VND and SND genes across 19 higher plant species along with computational modelling of genes regulated or co-regulated with these transcriptional factors.ResultsThe comparative genome analysis revealed that evolutionarily the secondary-wall-associated NAC domain transcription factors first appeared in Selaginella moellendorffii. In fact, among the three groups, only VND genes appeared in S. moellendorffii, which is evolutionarily earlier than the other two groups. The Arabidopsis and rice gene expression analysis showed specific patterns of the secondary cell wall-associated NAC genes (SND, NST and VND). Most of them were preferentially expressed in the stem, especially the second internodes. Furthermore, comprehensive co-regulatory network analysis revealed that the SND and MYB genes were co-regulated, which indicated the coordinative function of these transcriptional factors in modulating cell wall biosynthesis. In addition, the co-regulatory network analysis revealed many novel genes and pathways that could be involved in cell wall biosynthesis and its regulation. The gene ontology analysis also indicated that processes like carbohydrate synthesis, transport and stress response, are coordinately regulated toward cell wall biosynthesis.ConclusionsOverall, we provided a new insight into the evolution and the gene regulatory network of a subgroup of the NAC gene family controlling cell wall composition through bioinformatics data mining and bench validation. Our work might benefit to elucidate the possible molecular mechanism underlying the regulation network of secondary cell wall biosynthesis.

Highlights

  • NAC domain transcription factors are important transcriptional regulators involved in plant growth, development and stress responses

  • This yielded a total of 199 NAC proteins across 19 species that possibly regulate secondary cell wall biosynthesis

  • Co-regulatory network analysis of SNDs and Gene ontology (GO) enrichment analysis indicated that most co-expressed genes were involved in secondary cell wall biogenesis, while we found that some oxidoreductase activity and phenylpropanoid biosynthesis pathway genes were co-expressed with SND genes, e.g. peroxidase 64, NADPH oxidase and FLS2

Read more

Summary

Introduction

NAC domain transcription factors are important transcriptional regulators involved in plant growth, development and stress responses. Recent studies have revealed several classes of NAC transcriptional factors crucial for controlling secondary cell wall biosynthesis. These transcriptional factors mainly include three classes, SND, NST and VND. The current first generation biofuel is based on sugar and starch derived from feedstocks such as sugrarcane and corn; this platform is not sustainable for various reasons. Lignocellulosic biomass has been proposed as the major feedstock for second generation biofuels to enable the transition from fossil fuel-based energy to renewable energy for the various economic and environmental advantages gained over first generation biofuels [1,2]. Since secondary cell walls in fibres and tracheary elements constitute the most abundant biomass produced by plants, it is necessary to elucidate the possible molecular mechanisms underlying the regulation of secondary cell wall biosynthesis for improved plant biomass production

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call