Abstract

Other than the Methanobacteriales and Methanomassiliicoccales, the characteristics of archaea that inhabit the animal microbiome are largely unknown. Methanimicrococcus blatticola, a member of the Methanosarcinales, currently reunites two unique features within this order: it is a colonizer of the animal digestive tract and can only reduce methyl compounds with H2 for methanogenesis, a increasingly recognized metabolism in the archaea and whose origin remains debated. To understand the origin of these characteristics, we have carried out a large-scale comparative genomic analysis. We infer the loss of more than a thousand genes in M. blatticola, by far the largest genome reduction across all Methanosarcinales. These include numerous elements for sensing the environment and adapting to more stable gut conditions, as well as a significant remodeling of the cell surface components likely involved in host and gut microbiota interactions. Several of these modifications parallel those previously observed in phylogenetically distant archaea and bacteria from the animal microbiome, suggesting large-scale convergent mechanisms of adaptation to the gut. Strikingly, M. blatticola has lost almost all genes coding for the H4MPT methyl branch of the Wood–Ljungdahl pathway (to the exception of mer), a phenomenon never reported before in any member of Class I or Class II methanogens. The loss of this pathway illustrates one of the evolutionary processes that may have led to the emergence of methyl-reducing hydrogenotrophic methanogens, possibly linked to the colonization of organic-rich environments (including the animal gut) where both methyl compounds and hydrogen are abundant.

Highlights

  • Methanogenic archaea are common components of the intestinal microbiota of animals ranging from insects to humans [1,2,3,4]

  • Methanimicrococcus blatticola, a member of the Methanosarcinales, currently reunites two unique features within this order: it is a colonizer of the animal digestive tract and can only reduce methyl compounds with H2 for methanogenesis, a increasingly recognized metabolism in the archaea and whose origin remains debated

  • To understand the origin of these characteristics, we have carried out a large-scale comparative genomic analysis

Read more

Summary

INTRODUCTION

Methanogenic archaea are common components of the intestinal microbiota of animals ranging from insects to humans [1,2,3,4]. Host-associated archaea lineages have distinct genetic background due to their distant evolutionary relationships and different histories of adaptation to the gut, and they can cover a wide variety of hosts. Methanimicrococcus has been reported multiple times in the gut of animals, and in some cases, it was found to represent a large majority of the methanogenic community in termites and some ruminants [14, 15]. Based on this apparent niche specificity, M. blatticola should display specific genomic adaptations to a hostassociated lifestyle. This identity cutoff was based on the minimal distance between M

MATERIALS AND METHODS
RESULTS AND DISCUSSION
FUNDING INFORMATION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call