Abstract
Poly-γ-glutamic acid (PGA) is a homopolyamide, biosynthesized mostly by Bacillus sp. Our study focuses on understanding the genetic differences between the two species of Bacillus for their capability to produce PGA. Genes related to PGA synthesis, regulation, degradation and mannitol utilization of Bacillus subtilis Natto3 (BSN3) were compared with that of B. methylotrophicus IC4 (BMIC4). These strains differed in their genome sizes and average gene lengths. BMIC4 genome size was 4,214,684 bp which was larger than BSN3 comprising of 3,601,055 bp with no plasmid found in either of them. The average gene length of BSN3 and BMIC4 were 843.33 bp and 819.82 bp, respectively with higher number of predicted genes and proteins in BMIC4 (4341 and 4223 respectively). Interestingly, BMIC4 being larger in genome size and gene number, exhibited lesser number of unique pfam results (62) compared to 389 unique pfam of BSN3. Based on 16S rRNA gene sequence, BSN3 and BMIC4 were placed distantly on the phylogenetic tree. Sequence similarity of PGA producing genes ywsC, ywtA and ywtB between BSN3 and BMIC4 was 100%, 100% and 30% respectively. We report the presence of PGA degrading gene pgdS in BMIC4 which is otherwise reportedly absent in various strains of B. methylotrophicus. Sequence variation in the genes may have an impact on the PGA chain length, produced by these strains as BMIC4 produces high molecular weight PGA than BSN3. As B. methylotrophicus is newly discovered species, our comparative study will provide insights on the genomic variability between these two novel PGA producing strains
Highlights
Biopolymers have gained a lot of importance in the recent years due to their multifarious applications and biodegradability
Whole genome sequencing is recognized as a phenomenal tool to capture the sequence of information on various organisms which can be correlated with respect to the variation in the genome and related phenotypes[23]
Bacillus subtilis Natto3 (BSN3) and B. methylotrophicus IC4 (BMIC4) as reported in our previous studies are the novel Poly-γ-glutamic acid (PGA) producers and differ greatly with respect to nutrient and substrate utilization, growth, and PGA production which was evident from their unique expression pattern of pgs operon genes
Summary
Biopolymers have gained a lot of importance in the recent years due to their multifarious applications and biodegradability. Bacillus spp. are well known PGA producers but limited number of strains have been exploited at industrial scale out of which B. subtilis is one of the most utilized strains amongst all. One of the newly reported strains with potential to produce higher molecular weight PGA is B. methylotrophicus. The demand for ultra-high molecular weight PGA is slowly increasing in certain applications such as corneal wound healing, intenstinal Calcium absorption etc[2,3]. It is being explored for PGA production due to the exigencies in the areas where higher molecular weight PGA is required
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.