Abstract

BackgroundUreaplasma urealyticum (UUR) and Ureaplasma parvum (UPA) are sexually transmitted bacteria among humans implicated in a variety of disease states including but not limited to: nongonococcal urethritis, infertility, adverse pregnancy outcomes, chorioamnionitis, and bronchopulmonary dysplasia in neonates. There are 10 distinct serotypes of UUR and 4 of UPA. Efforts to determine whether difference in pathogenic potential exists at the ureaplasma serovar level have been hampered by limitations of antibody-based typing methods, multiple cross-reactions and poor discriminating capacity in clinical samples containing two or more serovars.ResultsWe determined the genome sequences of the American Type Culture Collection (ATCC) type strains of all UUR and UPA serovars as well as four clinical isolates of UUR for which we were not able to determine serovar designation. UPA serovars had 0.75−0.78 Mbp genomes and UUR serovars were 0.84−0.95 Mbp. The original classification of ureaplasma isolates into distinct serovars was largely based on differences in the major ureaplasma surface antigen called the multiple banded antigen (MBA) and reactions of human and animal sera to the organisms. Whole genome analysis of the 14 serovars and the 4 clinical isolates showed the mba gene was part of a large superfamily, which is a phase variable gene system, and that some serovars have identical sets of mba genes. Most of the differences among serovars are hypothetical genes, and in general the two species and 14 serovars are extremely similar at the genome level.ConclusionsComparative genome analysis suggests UUR is more capable of acquiring genes horizontally, which may contribute to its greater virulence for some conditions. The overwhelming evidence of extensive horizontal gene transfer among these organisms from our previous studies combined with our comparative analysis indicates that ureaplasmas exist as quasi-species rather than as stable serovars in their native environment. Therefore, differential pathogenicity and clinical outcome of a ureaplasmal infection is most likely not on the serovar level, but rather may be due to the presence or absence of potential pathogenicity factors in an individual ureaplasma clinical isolate and/or patient to patient differences in terms of autoimmunity and microbiome.

Highlights

  • Ureaplasma urealyticum (UUR) and Ureaplasma parvum (UPA) are sexually transmitted bacteria among humans implicated in a variety of disease states including but not limited to: nongonococcal urethritis, infertility, adverse pregnancy outcomes, chorioamnionitis, and bronchopulmonary dysplasia in neonates

  • Parvum strains Subsequent to the publication and annotation of the complete genome of a clinical isolate of UPA3 by Glass and colleagues [25], sequencing of all 14 serovar type strains deposited in the American Type Culture Collection (ATCC) was begun to study differences among them and examine them for virulence factors

  • Studies were not done at this time to determine the antigen that the sera antibodies were recognizing

Read more

Summary

Introduction

Ureaplasma urealyticum (UUR) and Ureaplasma parvum (UPA) are sexually transmitted bacteria among humans implicated in a variety of disease states including but not limited to: nongonococcal urethritis, infertility, adverse pregnancy outcomes, chorioamnionitis, and bronchopulmonary dysplasia in neonates. Ureaplasmas are among the smallest self-replicating organisms capable of a cell-free existence They were described first in 1954 [1] and the genus Ureaplasma was established in 1974 [2], comprising those members of the family Mycoplasmataceae that hydrolyze urea and use it as a metabolic substrate for generation of ATP. We sequenced the 14 ATCC UPA and UUR serovars as an effort to aid the development of serotyping methods and to enhance the study of the suggested differential pathogenicity [10] and ureaplasma biology. DNA sequencing of parts of some of the hybrid genomes showed that serotype specific markers were transferred horizontally among ureaplasmas [24] Combining these findings with the comparative genome analysis of the 14 ureaplasma ATCC serovars has allowed us to better understand the potential mechanisms and reasons for these observations among clinical isolates. We report on genes that may contribute to the virulence of ureaplasmas, including the MBA and its putative mechanism of phase variation

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call