Abstract

Paenibacillus polymyxa is a well-known Gram-positive biocontrol bacterium. It has been reported that many P. polymyxa strains can inhibit bacteria, fungi and other plant pathogens. Paenibacillus polymyxa employs a variety of mechanisms to promote plant growth, so it is necessary to understand the biocontrol ability of bacteria at the genome level. In the present study, thanks to the widespread availability of Paenibacillus genome data and the development of bioinformatics tools, we were able to analyze and mine the genomes of 43 P. polymyxa strains. The strain NCTC4744 was determined not to be P. polymyxa according to digital DNA-DNA hybridization and average nucleotide identity. By analysis of the pan-genome and the core genome, we found that the pan-genome of P. polymyxa was open and that there were 3,192 core genes. In a gene cluster analysis of secondary metabolites, 797 secondary metabolite gene clusters were found, of which 343 are not similar to known clusters and are expected to reveal a large number of new secondary metabolites. We also analyzed the plant growth-promoting genes that were mined and found, surpisingly, that these genes are highly conserved. The results of the present study not only reveal a large number of unknown potential secondary metabolite gene clusters in P. polymyxa, but also suggest that plant growth promotion characteristics are evolutionary adaptations of P. polymyxa to plant-related habitats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.