Abstract

Trichomes are regularly distributed on the leaves of Arabidopsis thaliana. The gene regulatory network underlying trichome patterning involves more than 15 genes. However, it is possible to explain patterning with only five components. This raises the questions about the function of the additional components and the identification of the core network. In this study, we compare the relative expression of all patterning genes in A. thaliana, A. alpina and C. hirsuta by qPCR analysis and use mathematical modelling to determine the relative importance of patterning genes. As the involved proteins exhibit evolutionary conserved differential complex formation, we reasoned that the genes belonging to the core network should exhibit similar expression ratios in different species. However, we find several striking differences of the relative expression levels. Our analysis of how the network can cope with such differences revealed relevant parameters that we use to predict the relevant molecular adaptations in the three species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.