Abstract

Dogs acquire infections with the Anaplasmataceae family pathogens, E. canis, E. chaffeensis, E. ewingii, A. platys and A. phagocytophilum mostly during summer months when ticks are actively feeding on animals. These pathogens are also identified as causing diseases in people. Despite the long history of tick-borne diseases in dogs, much remains to be defined pertaining to the clinical and pathological outcomes of infections with these pathogens. In the current study, we performed experimental infections in dogs with E. canis, E. chaffeensis, A. platys and A. phagocytophilum. Animals were monitored for 42 days to evaluate infection-specific clinical, hematological and pathological differences. All four pathogens caused systemic persistent infections detectible throughout the 6 weeks of infection assessment. Fever was frequently detected in animals infected with E. canis, E. chaffeensis, and A. platys, but not in dogs infected with A. phagocytophilum. Hematological differences were evident in all four infected groups, although significant overlap existed between the groups. A marked reduction in packed cell volume that correlated with reduced erythrocytes and hemoglobin was observed only in E. canis infected animals. A decline in platelet numbers was common with E. canis, A. platys and A. phagocytophilum infections. Histopathological lesions in lung, liver and spleen were observed in all four groups of infected dogs; infection with E. canis had the highest pathological scores, followed by E. chaffeensis, then A. platys and A. phagocytophilum. All four pathogens induced IgG responses starting on day 7 post infection, which was predominantly comprised of IgG2 subclass antibodies. This is the first detailed investigation comparing the infection progression and host responses in dogs after inoculation with four pathogens belonging to the Anaplasmataceae family. The study revealed a significant overlap in clinical, hematological and pathological changes resulting from the infections.

Highlights

  • During summer months, dogs are likely to acquire infections with many different tick borne pathogens due to increased tick activity

  • Infections with E. canis, E. chaffeensis, E. ewingii, A. platys and A. phagocytophilum have been documented in people [8,9,10,11]

  • The A. phagocytophilum dog isolate named Martin was cultivated in ISE6 tick cells and the inoculum was prepared similar to the E. chaffeensis inoculum described in [18]

Read more

Summary

Introduction

Dogs are likely to acquire infections with many different tick borne pathogens due to increased tick activity. The infections in dogs may include five Anaplasmataceae family pathogens; Ehrlichia canis, E. chaffeensis, E. ewingii, Anaplasma phagocytophilum and A. platys [1,2]. The primary host cell tropism for these pathogens is mononuclear leukocytes for E. canis and E. chaffeensis, granulocytes for E. ewingii and A. phagocytophilum and platelets for A. platys [3,4]. Infections with these pathogens can cause clinical and/or subclinical outcomes. Experimental infection studies have been performed to assess the disease progression and persistence in dogs with E. canis [13,14], E chaffeensis [15], A. phagocytophilum [16] and A platys [17]. Comparative infection studies focused on assessing the pathophysiological outcomes of multiple tick-borne rickettsial pathogens have not been conducted

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call