Abstract
Abstract As a kind of associated geological gas, coalbed methane (CBM) is mainly adsorbed in the coal seam. The coal-methane adsorption phenomenon can be described by Langmuir monolayer adsorptio n model, BET multilayer adsorption model and the Theory of Volume Filling of Micropore (TVFM), whereas the binary gas adsorption phenomenon can be described by the extended Langmuir Model. For the CBM in the low permeability coal seam, the amount of gas released by direct drainage is relatively limited, which cannot eliminate the gas explosion and outburst hazards. Gas injection is an effective method to promote methane drainage. In this paper, the free desorption and nitrogen injection displacement experiments are comparatively analyzed, which allows verifying the effectiveness of nitrogen injection’s enhancement to gas drainage. The experiment of injecting nitrogen gas into the coal body shows that the coal fracture can be maintained or expanded by the injected gas pressure so that more methane can be released. The nitrogen injection has a higher time efficiency than that of free desorption as well. The displacement ratio of N2/CH4 is in the range of 1-3. Both the injection pressure and confining pressure affect the displacement ratio. The analysis of the desorbed gas components shows that the relationship between the methane component and gas flooding time is an “inverted S” shape curve, and the appropriate time for the methane collection can be inferred by the time interval of the rapid decline of the curve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.