Abstract

Seagrass meadows within estuaries are highly sensitive to increased supplies of nitrogen (N). The urbanization of coastal watersheds increases the delivery of N to estuaries, threatening seagrass habitats; both seagrass production per unit area and the area of seagrass meadows diminish as land-derived N loads increase. The damaging effects of land-derived N loads may be lessened where there are fringes of coastal wetlands interposed between land and seagrass meadows. Data compiled from the literature showed that production per unit area by seagrasses increased and losses of seagrass habitat were lower in estuaries with relatively larger areas of fringing wetlands. Denitrification and the burial of land-derived N within fringe wetlands may be sufficient to protect N-sensitive seagrass habitats from the detrimental effects of land-derived N. The protection furnished by fringing wetlands may be overwhelmed by increases in anthropogenic N loads in excess of 20–100 kg N ha−1 y−1. The relationships of land-derived N loadings, fringing coastal wetlands, and seagrass meadows demonstrate that different units of the landscape mosaic found in coastal zones do not exist as separate units, but instead are coupled and uncoupled by biogeochemical transformations and transport among environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.