Abstract
The purpose of this study is to evaluate the stress distribution of splinted or nonsplinted restorations supported by 2 short or 2 standard dental implants in the mandibular molar region using three-dimensional finite element analysis. Two standard implants (4.8 × 10mm) were placed in the mandibular molar area. Two short implants (4.8 × 6 mm) were located in the mandibular molar atrophied area. Implant-supported prostheses were simulated with splinted or nonsplinted crowns design. Vertical load of 200 N and oblique load of 100 N were applied on the central fossa and the buccal cusps. Evaluation of stress distribution in implants and peri-implant cortical bone using the finite element analysis software (Ansys, Version 2020, R2), a multipurpose computer design program. The maximum principal stress of cortical bone around the implants was higher in nonsplinted crowns when compared to splinted crowns. The stress concentration of cortical bone surrounding implants increased as the implant length decreased either splinted crowns or nonsplinted crowns. The short implants with nonsplinted crowns showed lower stresses when compared to standard implants with nonsplinted crowns. The results suggest that the nonsplinted prostheses supported by short dental implants might be considered in the molar area of the atrophic mandible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Biomechanics and Biomedical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.