Abstract

Almonds are becoming a central element in the gastronomic and food industry worldwide. Over the last few years, almond production has increased globally. Portugal has become the third most important producer in Europe, where this increasing trend is particularly evident. However, the susceptibility of almond trees to changing climatic conditions presents substantial risks, encompassing yield reduction and quality deterioration. Hence, yield forecasts become crucial for mitigating potential losses and aiding decisionmakers within the agri-food sector. Recent technological advancements and new data analysis techniques have led to the development of more suitable methods to model crop yields. Herein, an innovative approach to predict almond yields in the Trás-os-Montes region of Portugal was developed, by using machine learning regression models (i.e., the random forest regressor, XGBRegressor, gradient boosting regressor, bagging regressor, and AdaBoost regressor), coupled with remote sensing data obtained from different satellite platforms. Satellite data from both proprietary and free platforms at different spatial resolutions were used as features in the study (i.e., the GSMP: 11.13 km, Terra: 1 km, Landsat 8: 30 m, Sentinel-2: 10 m, and PlanetScope: 3 m). The best possible combination of features was analyzed and hyperparameter tuning was applied to enhance the prediction accuracy. Our results suggest that high-resolution data (PlanetScope) combined with irrigation information, vegetation indices, and climate data significantly improves almond yield prediction. The XGBRegressor model performed best when using PlanetScope data, reaching a coefficient of determination (R2) of 0.80. However, alternative options using freely available data with lower spatial resolution, such as GSMaP and Terra MODIS LST, also showed satisfactory performance (R2 = 0.68). This study highlights the potential of integrating machine learning models and remote sensing data for accurate crop yield prediction, providing valuable insights for informed decision support in the almond sector, contributing to the resilience and sustainability of this crop in the face of evolving climate dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.