Abstract

Dual-beam instruments incorporate both an electron column and an ion column into a single instrument, and therefore allow the chemical vapor deposition (CVD) process to be either ion- or electron-beam assisted. Damage has been observed in the surface layers of specimens in which ion-beam assisted CVD processes have been employed. Cross-section transmission electron microscopy (TEM) has been used to compare (100) Si substrates on which Pt metal lines have been grown by ion- and electron-beam assisted CVD processes. The micrographs show that a 30 keV Ga+ ion beam, a 5 keV ion beam, and a 3 keV electron beam imparts 50 nm, 13 nm, and 3 nm of damage to the Si substrate, respectively. In addition, Au–Pd and Cr sputter coatings were evaluated for the prevention of ion-beam induced surface damage. TEM cross-section specimens revealed that Cr sputter coatings > 30 nm in thickness are sufficient to protect the (100) Si surface from the 30 keV Ga+ ion beam while Au–Pd sputter coatings up to 70 nm in thickness may be discontinuous and, therefore, will not protect surface regions from ion beam damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call