Abstract
Vulnerability and attack information must be collected to assess the severity of vulnerabilities and prioritize countermeasures against cyberattacks quickly and accurately. Common Vulnerabilities and Exposures is a dictionary that lists vulnerabilities and incidents, while Common Attack Pattern Enumeration and Classification is a dictionary of attack patterns. Direct identification of common attack pattern enumeration and classification from common vulnerabilities and exposures is difficult, as they are not always directly linked. Here, an approach to directly find common links between these dictionaries is proposed. Then, several patterns, which are combinations of similarity measures and popular algorithms such as term frequency–inverse document frequency, universal sentence encoder, and sentence BERT, are evaluated experimentally using the proposed approach. Specifically, two metrics, recall and mean reciprocal rank, are used to assess the traceability of the common attack pattern enumeration and classification identifiers associated with 61 identifiers for common vulnerabilities and exposures. The experiment confirms that the term frequency–inverse document frequency algorithm provides the best overall performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.