Abstract

Assembling high-quality microbial genomes using only cost-effective Nanopore long-read systems such as Flongle is important to accelerate research on the microbial genome and the most critical point for this is the polishing process. In this study, we performed an evaluation based on BUSCO and Prokka gene prediction in terms of microbial genome assembly for eight state-of-the-art Nanopore polishing tools and combinations available. In the evaluation of individual tools, Homopolish, PEPPER, and Medaka demonstrated better results than others. In combination polishing, the second round Homopolish, and the PEPPER × medaka combination also showed better results than others. However, individual tools and combinations have specific limitations on usage and results. Depending on the target organism and the purpose of the downstream research, it is confirmed that there remain some difficulties in perfectly replacing the hybrid polishing carried out by the addition of a short-read. Nevertheless, through continuous improvement of the protein pores, related base-calling algorithms, and polishing tools based on improved error models, a high-quality microbial genome can be achieved using only Nanopore reads without the production of additional short-read data. The polishing strategy proposed in this study is expected to provide useful information for assembling the microbial genome using only Nanopore reads depending on the target microorganism and the purpose of the research.

Highlights

  • Assembling high-quality microbial genomes using only cost-effective Nanopore long-read systems such as Flongle is important to accelerate research on the microbial genome and the most critical point for this is the polishing process

  • Microbial genomes present enormous differences in genomic structures, even among strains of the same species. These differences are caused by various reasons such as shorter generation time, higher mutation rate and evolution speed, and structural changes in genomes due to horizontal gene transfer (HGT)[1]

  • The microbial genomic assembly has been invigorating since Oxford Nanopore Technologies commercialized its product Flongle, which uses replaceable small-size flow cells

Read more

Summary

Introduction

Assembling high-quality microbial genomes using only cost-effective Nanopore long-read systems such as Flongle is important to accelerate research on the microbial genome and the most critical point for this is the polishing process. In this study, using real genomics data of E. coli, one of the representative microorganisms, we evaluated the performance of various Nanopore-based polishing tools and verified the proper combination to construct the high-quality microbial genome assembly. We used a set of short-read data and hybrid polishing to compare and confirm if it was possible to construct a high-quality microbial genome assembly that could be used for downstream research by using only Nanopore-based polishing.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call