Abstract

ABSTRACT Static Random Access Memory (SRAM) is volatile and uses latching flip-flops to store each bit. To make SRAM work as non-volatile memory (NVM), memristor-based SRAM is a feasible choice mainly due to its high-speed operation and low power consumption. In this paper, the operational characteristics of 4T2M SRAM have been studied based on three different memristor models developed by Biolek et al. (2009), Joglekar and Wolf 2009, and Prodromakis et al. (2011), and comparative performance analysis has been made to assess its adaption to NVM. These three different models are compared in terms of delay, power consumption, and static noise margin. From the simulation, it has been observed that Biolek 4T2M SRAM produces better performance in write delay calculation scoring 0.873 ns when ‘0’ is written and 0.166 ns when ‘1’ is written. This model also provided a low power consumption value compared to other models. However, ternary plot analysis finds that Prodromakis is performing in average better in all positive traits. All the simulations are done in LTSpice and the transistor uses TSMC 180 nm CMOS technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call