Abstract
Esox lucius (northern pike) is an invasive species in fresh water and causes extreme impacts in the local habitat. Northern pike easily replaces the local native species and disrupts the regional ecosystem. Traditionally, in connection with environmental monitoring, invasive species are identified using PCR through species-specific DNA. PCR involves many cycles of heating to amplify the target DNA and requires complex equipment; on the contrary, loop-mediated isothermal amplification (LAMP) entails isothermal amplification, which means the target needs to be heated to only one temperature between 60 and 65°C. In this study, the authors conducted a LAMP assay and a conventional PCR assay to determine which technique is less time consuming, more sensitive and reliable for use in real-time and on-site environmental monitoring. Mitochondrial gene cytochrome b, an essential factor in electron transport; histone (H2B), a nuclear DNA responsible for the chromatin structure; and glyceraldehyde 3-phosphate dehydrogenase involved in energy metabolism are taken as the reference genes for this article. The results show that LAMP is more sensitive and less time consuming than the conventional PCR, and thus it can be used for the detection of northern pike in aquatic ecosystems related to environmental monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.