Abstract
The aim of the present study was to evaluate two vesicular carrier systems, ethosomes and elastic liposomes loaded with hepatitis B surface antigen, for in vitro qualitative and quantitative uptake by human dendritic cells (DCs) and ability to stimulate T lymphocytes. Quantitative uptake of antigen-loaded carriers was documented by flow cytometry, and internalization of the systems by the DCs was studied using spectral bioimaging. Ability of antigen-pulsed DCs to stimulate autologous peripheral blood lymphocytes and levels of TH1/TH2 cytokines were also examined using flow cytometry. Both vesicular carrier systems as antigen delivery modules and DCs as antigen-presenting cells were able to generate a protective immune response. However, ethosomes were found to have higher internalizing ability and immunogenicity in comparison with elastic liposomes. These properties of ethosomes coupled with their skin-navigating potential, make it an attractive vehicle for development of a transcutaneous vaccine against hepatitis B in preference to elastic liposomes. From the Clinical Editor Two carrier systems for more potent vaccine administration - ethosomes and elastic liposomes loaded with hepatitis B surface antigen – are compared. Ethosomes demonstrated higher internalizing ability and immunogenicity. Due to their known skin-navigating potential, ethosomes may represent an attractive vehicle for development of a transcutaneous vaccine against hepatitis B.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nanomedicine: Nanotechnology, Biology and Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.