Abstract

The purpose of the study was to evaluate and compare the flexural strength of nano-reinforced zirconia feldspathic porcelain, lithium disilicate ceramics, and zirconia. Ten bar-shaped specimens of computer-aided design (CAD)/computer-aided manufacturing (CAM) zirconia, reinforced feldspathic porcelain, and reinforced lithium disilicate were fabricated in accordance to International Organization for Standardization (ISO 6872; n = 10). Feldspathic porcelain and lithium disilicate ceramic specimens were reinforced with 5, 10, 15, and 20% of zirconia nanoparticles through a customized technique. The specimens were subjected to three-point flexural strength test using universal testing machine (UTM) and examined for crack propagation using a scanning electron microscope (SEM). Oneway analysis of variance (ANOVA) and Tukey test were used to analyze the data (p < 0.05). The flexural strength of feldsphatic porcelain increased with the increase in the concentration of zirconia particles. The mean flexural strength of 5, 10, 15, and 20% nano-zirconia-incorporated lithium disilicate was 93.8, 97.1, 100.6, and 100.8 MPa respectively, and was lower than the control group (221.7 MPa). A significant difference in the flexural strength was found with the incorporation of nano-zirconia particles. The flexural strength of zirconia-integrated feld-spathic porcelain increased and lithium disilicate ceramics decreased with the nano-zirconia reinforcement. The simplified approach of reinforcing feldspathic porcelain with zirconia nanoparticles can be adapted in clinical situations of higher masticatory forces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.