Abstract

Applications of microbiome research through metagenomics promise to generate microbiome manipulation strategies for improved larval survival in aquaculture. However, existing lacunae on the effects of sample preservation methods in metagenome profiles hinder the successful application of this technique. In this context, four preservation methods were scrutinized to identify reliable methods for fish larval microbiome research. The results showed that a total of ten metagenomics metrics, including DNA yield, taxonomic and functional microbiome profiles, and diversity measures, were significantly (P < 0.05) influenced by the preservation method. Activity ranking based on the performance and reproducibility showed that three methods, namely immediate direct freezing, room temperature preservation in absolute ethanol, and preservation at - 20°C in lysis, storage, and transportation buffer, could be recommended for larval microbiome research. Furthermore, as there was an apparent deviation of the microbiome profiles of ethanol preserved samples at room temperature, the other methods are preferred. Detailed analysis showed that this deviation was due to the bias towards Vibrionales and Rhodobacterales. The microbial taxa responsible for the dissimilarity across different methods were identified. Altogether, the paper sheds light on the preservation protocols of fish larval microbiome research for the first time. The results can help in cross-comparison of future and past larval microbiome studies. Furthermore, this is the first report on the activity ranking of preservation methods based on metagenomics metrics. Apart from methodological perspectives, the paper provides for the first time certain insights into larval microbial profiles of Rachycentron canadum, a potential marine aquaculture species. KEY POINTS: • First report on effects of preservation methods on fish larval microbiome profiles. • First report on activity ranking of preservation methods based on metagenomics metrics. • Storage methods influenced DNA yield, taxonomic and functional microbiome profiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.