Abstract

During the past decade promising methods for computational prediction of electron ionization mass spectra have been developed. The most prominent ones are based on quantum chemistry (QCEIMS) and machine learning (CFM-EI, NEIMS). Here we provide a threefold comparison of these methods with respect to spectral prediction and compound identification. We found that there is no unambiguous way to determine the best of these three methods. Among other factors, we find that the choice of spectral distance functions play an important role regarding the performance for compound identification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.