Abstract

MSCs (Mesenchymal Stem Cells) can differentiate into various lineages, including neurons and glial cells. In the past few decades, MSCs have been well explored in the context of neuronal differentiation and have been reported to have the immense potential to form distinct kinds of neurons. The distinguishing features of MSCs make them among the most desired cell sources for stem cell therapy. This study involved the trans-differentiation of Adipose-derived human Mesenchymal Stem Cells (ADMSCs) into neurons. The protocol employs a cocktail of chemical inducers in different combinations, including Brain-derived neurotrophic factor (BDNF), epidermal growth factor (EGF), and Nerve growth factor (NGF) Fibroblastic growth factor (FGF), in induction media. Both types have been successfully differentiated into neurons, confirmed by morphological aspects and the presence of neural-specific markers through RT-PCR (Reverse transcription polymerase chain reaction) studies and immunocytochemistry assay. They have shown excellent morphology with long neurites, synaptic connections, and essential neural markers to validate their identity. The results may significantly contribute to cell replacement therapy for neurological disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call