Abstract

PurposeTo evaluate three rigid, stable fixation methods for sagittal split ramus osteotomy (SSRO), using finite element analysis. The hypothesis is that a customized miniplate presents better stress concentration and distribution. Materials and methodsA 3D model of a hemimandible was created, and a 10-mm-advancement SSRO was simulated and fixed as follows: 3-DCP group — one custom miniplate fixed by eight screws; 4-H2P group — two miniplates of four holes each, fixed by eight screws; and 6-H2P group — two miniplates of six holes each fixed by 12 screws. After a vertical loading of 100 N, the values for von Mises stress, modified von Mises stress, and maximum and minimum principal stresses were measured. ResultsThe area of maximum principal stress was similar for the three groups — located in the upper miniplate, in the screw near the proximal segment osteotomy. The maximum von Mises stresses were 1580.4 MPa, 1005 MPa, and 977.56 MPa for the 3DCP, 4-H2P, and 6-H2P groups, respectively, showing an allowable displacement of 2.57 mm, 1.62 mm, and 1.52 mm for the 3DCP, 4-H2P, and 6-H2P groups, respectively. ConclusionThe customized miniplate did not present better stress distribution than two commonly used types of fixation. Fixation with two straight miniplates, either with four or six holes, offers adequate resistance for 10 mm linear advancements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.