Abstract
Aim: The purpose of this study was to use measurements from cone beam computed tomography scans to quantify the cortical bone thickness of mandibular buccal shelf region and preferable site for buccal shelf implant placement in 10 hyperdivergent and 10 hypodivergent patients. Method: 20 cone beam computed tomographies were equally divided based on divergence. 6 sites were examined: mesial of first molar (6M), middle of first molar (6Mi), interdental between the first and second molar (Id), mesial of second molar (7M), middle of second molar (7Mi), and distal of second molar (7D). The study quantified the mandibular buccal shelf relative to its angle of slope, the cortical bone thickness measured perpendicular to the bone surface, the amount of cortical bone 30° angle to the bone surface. The cortical bone thickness was measured perpendicular and at a 30° angle at 3, 5, and 7 mm from the alveolar crest. Result: Significant change is seen at the buccal shelf slope at 6M ( P = .001) and further increase in this angle till 7D ( P = .003). Mean amount of cortical bone for hyperdivergent group at 7D is 4.77 ± 0.68 mm and for hypodivergent group is 3.86 ± 0.70 mm. Statistically significant differences were noted at insertion site at 90° and 30° for both groups at 3, 5, and 7 mm from the alveolar crest. Conclusion: Preferable site for buccal shelf implant placement is distal to the mandibular second molar. The maximum amount of cortical bone is found distal to the second molar 7 mm vertically from alveolar crest when the buccal shelf implant is placed at 30° angulation for hyperdivergent group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.