Abstract
This paper compares conventional and microwave hydrothermal carbonization (HTC) of human biowaste (HBW) at 160 °C, 180 °C and 200 °C as a potential technology to recover valuable carbonaceous solid fuel char and organic-rich liquor. Also discussed are the influence of HTC heating methods and temperature on HBW processing conversion into solid fuel char, i.e. yield and post-HTC management, dewaterability rates, particle size distribution and the carbon and energy properties of solid fuel char. While HTC temperatures influenced all parameters investigated, especially yield and properties of end products recovered, heating source effects were noticeable on dewatering rates, char particle sizes and HBW processing/end product recovery rate and, by extension, energy consumed. The microwave process was found to be more efficient for dewatering processed HBW and for char recovery, consuming half the energy used by the conventional HTC method despite the similarity in yields, carbon and energy properties of the recovered char. However, both processes reliably overcame the heterogeneity of HBW, converting them into non-foul end products, which were easily dewatered at <3 seconds/g total solids (TS) (c.f. 50.3 seconds/g TS for a raw sample) to recover energy-densified chars of ≈17 MJ/kg calorific value and up to 1.4 g/l of ammonia concentration in recovered liquor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.