Abstract

Aim:This study includes a comparative evaluation of the various surface treatments of the intaglio surface of crowns in combination with various luting agents for maximal retention.Materials and Methods:Totally, 150 dies of a standard complete crown preparation were fabricated. Wax pattern with a loop on the occlusal surface was prepared on each die using standard procedures, and then crowns were cast with nickel-chromium alloy. These crowns were randomly divided into five groups as per the surface of the intaglio surface of the metal copings. The crowns in each group were again subdivided randomly into three groups as per the luting agents used resin-modified glass ionomer cement, glass ionomer cement, and zinc phosphate cement. Retention was measured (MPa) by separating the metal crowns from the metallic die under tension on a Universal testing machine.Statistical Analysis Used:The data were recorded and statistically analyzed using one-way analysis of variance followed by Tukey's test.Results:The retention differed both with surface treatment and type of luting agents. Untreated group showed the least bond strengths < sandblasting with 50 µm alumina < sandblasting with 50 µm alumina with ultrasonic cleaning < sandblasting with 110 µm alumina < sandblasting with 110 µm alumina along with ultrasonic cleaning. For luting agents, glass ionomer cement showed least bond strength because there was no chemical bonding present between metal crown and metallic die, followed by zinc phosphate cement and maximum bond strength were found for resin-modified glass ionomer cement.Conclusion:Among all types of surface treatments used in this study, maximum bond strength was yielded by sandblasting with 110 µm alumina + ultrasonic cleaning and the best luting agent was resin-modified glass ionomer cement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.