Abstract
Green synthesis of metal nanoparticles is of great importance in the modern health care system. In this study, zinc nanoparticles (ZnONPs) were synthesized using leaf and root extracts of Withania somnifera using four different solvents. ZnONPs were characterized by UV-vis spectrophotometer with a range between 350–400 nm. Scanning electron microscope revealed spherical morphology with an overall size of 70–90 nm and XRD pattern confirmed the crystalline structure. The total flavonoids, phenolic, and alkaloid contents were significantly greater in the crude extracts as compared to ZnONPs. The highest scavenging activity was observed in ZnONPs from n-hexane and ethyl-acetate extracts of roots with IC50 values of 27.36 µg/mL and 39.44 µg/mL, respectively. ZnONPs from methanol and aqueous extracts showed significant antibacterial activity against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis while none of the extracts were found to have significant antifungal activity. Maximum cytotoxic activity was observed in ZnONPs synthesized from aqueous and n-hexane root extracts with LC50 values of 9.36 µg/mL and 18.84 µg/mL, respectively. The highest antidiabetic potential was exhibited by ZnONPs from n-hexane leaf extracts, i.e., 47.67 ± 0.25%. Maximum protein kinase inhibitory potential was observed in ZnONPs of ethyl-acetate extract of roots with a bald zone of 12 mm. These results indicated that Withania somnifera-based ZnONPs showed significant biological activities compared to crude extracts. These findings can further be utilized for in-vivo analysis of nano-directed drug delivery systems.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.