Abstract

This study aimed to investigate potential methane production through anaerobic digestion of dairy manure and co-digestion with maize silage. Two different anaerobic reactor configurations (single-stage continuously stirred tank reactor [CSTR] and hybrid anaerobic digester) were used and biogas production performances for each reactor were compared. The HR was planned to enable phase separation in order to improve process stability and biogas production under higher total solids loadings (≥4%). The systems were tested under six different organic loading rates increased steadily from 1.1 to 5.4 g VS/L.d. The CSTR exhibited lower system stability and biomass conversion efficiency than the HR. The specific biogas production of the hybrid system was between 440 and 320 mL/gVS with 81-65% volatile solids (VS) destruction. The hybrid system provided 116% increase in specific biogas production and VS destruction improved by more than 14%. When MS was co-digested together with dairy manure, specific biogas production rates increased about 1.2-fold. Co-digestion was more beneficial than mono-material digestion. The hybrid system allowed for generating methane enriched biogas (>75% methane) by enabling phase separation in the reactor. It was observed that acidogenic conditions prevailed in the first two compartments and the following two segments as methanogenic conditions were observed. The pH of the acidogenic part ranged between 4.7 and 5.5 and the methanogenic part was between 6.8 and 7.2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.