Abstract

Amiodarone (AD) and its major metabolite, desethylamiodarone (desethylAD), are both phospholipogenic. The present study was undertaken to evaluate the comparative susceptibilities of male Fischer-344 and Sprague-Dawley rats to AD-induced phospholipidosis in alveolar macrophages (AMs), liver and kidney tissue and the concomitant accumulation of AD and desethylAD in these cells, tissues and plasma. Rats were administered AD (100 mg/kg/day, p.o.) for 1 week. Plasma concentrations of AD and desethylAD were approximately 4- and 12-fold higher, respectively, in Fischer-344s compared to Sprague-Dawleys 24 h after the last dose. AD and desethylAD levels in AMs were approximately 12- and 25-fold higher, respectively, in Fischer-344s than Sprague-Dawleys. In the liver and kidney, levels of both compounds were also significantly higher in Fischer-344s than Sprague-Dawleys. Ultrastructural features indicative of phospholipidosis were not observed consistently in any tissue except AMs from treated Fischer-344s. AM total phospholipid increased nearly 5-fold in Fischer-344s, while Sprague-Dawleys showed no increase over control. AMs from both strains incubated with 10 μM AD or desethylAD in vitro were not significantly different in their accumulation of the compounds. When incubated with AD or desethylAD, the lysosomal phospholipases A 1 partially purified from AMs of both strains were equally sensitive to inhibition as measured by the drug concentration giving 50% inhibition in activity (IC 50). The results of this study indicate that at the same administered dose, AD and desethylAD, accumulate to higher tissue levels and are more phospholipogenic in male Fischer-344 rats than in male Sprague-Dawley rats. The basis for the high susceptibility of Fischer-344 rats to AM-induced phospholipidosis is unknown at present but appears not to be related to biochemical or cellular features of the AMs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.