Abstract

LiDAR data acquired by various platforms provide unprecedented data for forest inventory and management. Among its applications, individual tree detection and segmentation are critical and prerequisite steps for deriving forest structural metrics, especially at the stand level. Although there are various tree detection and localization approaches, a comparative analysis of their performance on LiDAR data with different characteristics remains to be explored. In this study, a new trunk-based tree detection and localization approach (namely, height-difference-based) is proposed and compared to two state-of-the-art strategies—DBSCAN-based and height/density-based approaches. Leaf-off LiDAR data from two unmanned aerial vehicles (UAVs) and Geiger mode system with different point densities, geometric accuracies, and environmental complexities were used to evaluate the performance of these approaches in a forest plantation. The results from the UAV datasets suggest that DBSCAN-based and height/density-based approaches perform well in tree detection (F1 score > 0.99) and localization (with an accuracy of 0.1 m for point clouds with high geometric accuracy) after fine-tuning the model thresholds; however, the processing time of the latter is much shorter. Even though our new height-difference-based approach introduces more false positives, it obtains a high tree detection rate from UAV datasets without fine-tuning model thresholds. However, due to the limitations of the algorithm, the tree localization accuracy is worse than that of the other two approaches. On the other hand, the results from the Geiger mode dataset with low point density show that the performance of all approaches dramatically deteriorates. Among them, the proposed height-difference-based approach results in the greatest number of true positives and highest F1 score, making it the most suitable approach for low-density point clouds without the need for parameter/threshold fine-tuning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.