Abstract

Spontaneously scrolling hydrosilicate nanotubes raise additional attention due to their sorption, catalytic, and other functional properties. Layered hydrosilicates like chrysotile and pecoraite form primarily multiwalled nanotubes and nanoscrolls with relatively wide diameter and length distributions. To understand the reasons behind these issues we propose here an energy model of multiwalled nanoscroll formation and growth that accounts for strain, surface, and adhesion energy changes. Objects of comparison are chrysotile and pecoraite nanoscrolls, obtained by hydrothermal synthesis and characterized by X-ray diffraction and microscopic techniques. Energy modeling reveals a preferable nanoscroll cross-section consisting of 12 to 13 chrysotile layers or 25 to 26 pecoraite layers. The energy effect of scrolling is relatively low (3–5 kJ/mol), and the energy minimum becomes broader during growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call