Abstract

This paper presents a comparative performance study of single-stage desalination processes with major configurations of membrane distillation (MD) modules. MD modules covered in this study are (a) direct contact MD (DCMD), (b) vacuum MD (VMD), (c) sweeping gas MD (SGMD), and (d) air gap MD (AGMD). MD-based desalination processes are simulated with rigorous theoretical MD models supported by molecular thermodynamic property models for the accurate calculation of performance metrics. The performance metrics considered in MD systems are permeate flux and energy efficiency, i.e., gained output ratio (GOR). A general criterion is established to determine the critical length of these four MDs (at fixed width) for the feasible operation of desalination in a wide range of feed salinities. The length of DCMD and VMD is restricted by the feed salinity and permeate flux, respectively, while relatively large AGMD and SGMD are allowed. The sensitivity of GOR flux with respect to permeate conditions is investigated for different MD configurations. AGMD outperforms other configurations in terms of energy efficiency, while VMD reveals the highest permeate production. With larger MD modules, utilization of thermal energy supplied by the hot feed for evaporation is in the order of VMD > AGMD > SGMD > DCMD. Simulation results highlight that energy efficiency of the overall desalination process relies on the efficient recovery of spent for evaporation, suggesting potential improvement in energy efficiency for VMD-based desalination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.