Abstract

Debates about the evolution of human bipedality sometimes include discussion on the energy costs of terrestrial locomotion of extinct and extant hominins. However, comparative analyses of hominin transport costs conducted to date have been limited and potentially misinforming, in part because they fail to consider phylogenetic history. In the present study, we compare the measured costs of pedestrian locomotion in humans and the estimated costs for Australopithecus afarensis (an early bipedal hominin), to a database of locomotory costs for mammals. Using data for 81 species of mammal, we demonstrate significant phylogenetic signal in both log-transformed body mass (logMass) and log-transformed net cost of transport (logNCOT), but no phylogenetic signal in residuals of the relationship between logNCOT and logMass. We then used this relationship to generate a prediction line for NCOT based on body mass, and compared this prediction with published measured data for NCOT of running and walking in humans, and estimated NCOT of walking in A. afarensis. The cost of human walking was 25% lower than predicted, while the cost of running was 27% higher. The cost of A. afarensis walking was 32% lower than predicted. However, all of these data points fall within the 95% prediction interval for mammals, indicating that they are not significantly lower or higher than predicted for other mammals of similar mass. Moreover, the difference between humans and our closest living relative the common chimpanzee is comparable to differences between other similarly closely related species. We therefore conclude that there is no evidence from metabolic data that humans, or A. afarensis, have/had a reduced energy cost of pedestrian locomotion compared to other mammals in general.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call