Abstract
Calcium (Ca2+)-signaling-based molecular communication is a short-range communication process that diffuses and propagates ions between the cells of a tissue. The communication process is initiated via stimulation and amplification of the production of Ca2+ ions within a cell; these ions then diffuse through a physical connection between cells called a gap junction. Ca2+ signaling can be found in different classes of cell. In excitable cells, initiation of the Ca2+-signaling process is accompanied by an electrical component; for nonexcitable cell types, the electrical component is absent; while hybrid cells exhibit both behaviors. This paper provides a comparison and analysis of the communication behavior in tissues comprised three specific cell types that utilize Ca2+ signaling: epithelium cells (nonexcitable), smooth muscle cells (excitable), and astrocytes (hybrid). The analysis focuses on spatiotemporal Ca2+ concentration dynamics and how they are influenced by the intracellular signaling process, the molecular diffusion delay, the gain and capacity of the communication channel, as well as intracellular signaling interference. This analysis of the communication behavior in the context of tissues provides insights useful for, inter alia , the design of nanomachines that are situated within tissues and that use analysis of the communication channel to infer tissue health.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.