Abstract
Electronic structures, geometries, and vertical excitation energies of chloroboron subphthalocyanine, tribenzodiazasubporphyrin, tribenzomonoazasubporphyrin, and tribenzosubporphyrin were calculated using density functional theory (DFT) and time-dependent (TD) DFT coupled with polarized continuum model (PCM) approach. Molecular geometries calculated at the BP86/6-311G(d) level reveal bowl-shape, trigonal prismatic conformations for all compounds with a variable bowl-depth that depends on the number of meso-nitrogen atoms in corresponding molecule. TDDFT-PCM calculations predict that the Q-band should undergo gradual high-energy shift, while the B-band should undergo low-energy shift upon stepwise substitution of the meso-nitrogen atoms in subphthalocyanine toward tribenzosubporphyrin. The TDDFT-PCM predicted trend was rationalized on the basis of electronic structures of target macrocycles. When comparison between theory and experiment is available, TDDFT-PCM calculations are in qualitative and quantitative agreement with experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.