Abstract

This research investigates the electromechanical damage-sensing behavior of strain-hardening steel fiber-reinforced cement composites (SH-SFRCs) with six types of steel fibers (1.5% volume fraction content) within an identical mortar matrix (90MPa). The six types of steel fibers studied are long twisted (T30/0.3), long smooth (S30/0.3), long hooked (H30/0.375), medium twisted (T20/0.2), medium smooth (S19/0.2), and short smooth (S13/0.2) steel fibers. The damage-sensing behavior was evaluated by measuring the changes in the electrical resistance during direct tensile tests. The electrical resistivity of the SH-SFRCs clearly decreased as the tensile strain increased until the post-cracking point, owing to the generation of multiple micro-cracks during strain-hardening. All the SH-SFRCs investigated had nominal gauge factors ranging between 50 and 140; these values are much higher than the commercially conventional gauge factor, which involves metal and is around 2. Both T30/0.3 and T20/0.2 produced the highest gauge factor, i.e., the best damage-sensing capacity, whereas S13/0.2 produced the highest electrical conductivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.