Abstract

This paper investigates lateral stiffness-based comparative structural efficiency between today’s prevalent structural systems for tall buildings of various forms. Conventional rectangular box form tall buildings of 60, 80, and 100 stories are optimally designed first with braced tubes, diagrids, and outrigger structures to meet the identical lateral stiffness requirements. The structural efficiency of each system is studied comparatively depending on building heights and height-to-width aspect ratios. This study is expanded to investigate the comparative structural system efficiency of complexshaped tall buildings, such as twisted, tilted, and tapered towers. For each complex form category, tall buildings are designed again with diagrids, braced tubes, and outrigger systems. Comparative efficiency between these structural systems in conjunction with various complex building forms, heights, and height-to-width aspect ratios is studied. Parametric structural models are generated to investigate the impacts of various important geometric configurations of complex-shaped tall buildings. The parametric models are exported to structural engineering software for analyses, design, and comparative studies. More efficient system selection and design optimization can substantially contribute to constructing sustainable built environments by saving building materials produced from our limited resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call