Abstract

To investigate the effects of supplemental Se on the transfer of Se to nursing pigs when sows are fed diets containing a Se level above the NRC recommendation (0.15 ppm), sows were fed diets containing no supplemental Se or supplemental (0.3 ppm) Se from sodium selenite or Se yeast. A nonSe-fortified corn-soybean meal basal diet with a high endogenous Se content served as the negative control (0.20 to 0.23 ppm Se). Fifty-two sows were fed diets from 60 d prepartum until 14 d of lactation. Six sows per treatment were bled at 60 and 30 d prepartum, at farrowing, and at 14 d postpartum to measure serum Se concentrations. Colostrum was collected within 12 h postpartum, and milk was collected at 14 d of lactation. Blood was obtained from 3 pigs each from 12 litters per treatment at birth and at weaning (d 14), and pooled serum was analyzed for Se and immunoglobulin G concentrations and glutathione peroxidase activity. Regardless of treatment, serum Se in sows declined throughout gestation and gradually increased during lactation. Sows fed Se yeast tended (P < 0.06) to have greater serum Se at farrowing than sows fed unsupplemented diets. Colostrum and milk (d 14) Se concentrations increased (P < 0.01) when sows were fed Se from yeast but not from sodium selenite. At birth, serum Se was increased (P < 0.01) for pigs whose dams were fed Se yeast compared with pigs from sows fed the basal diet. At 14 d of age, there was no difference in serum Se concentration of pigs from dams fed any of the treatments. Pig serum immunoglobulin G concentrations and glutathione peroxidase-1 activity were unaffected by dietary Se source. Supplementation of gestating and lactating sow diets with Se (0.3 ppm) from an organic or inorganic source reduced the number of stillbirths per litter. However, only pigs born to sows fed organic Se (Se yeast) had greater serum Se at birth. Organic Se increased Se concentration of colostrum and 14-d milk to a greater degree than inorganic Se.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.