Abstract

Pyrene is a ubiquitous, persistent, and mutagenic pollutant that belongs to the polycyclic aromatic hydrocarbons. Graphitic carbon nitride (g-C3N4) has emerged as a promising photocatalyst for degradation of various pollutants in water and wastewater treatment due to its unique band structure and excellent physiochemical stability. This paper presents the comparative study of composites g-C3N4 from various combinations of precursors using thermal polycondensation at 600 °C. Comparative experiments revealed that the preparation conditions of both precursors and the mass ratios of precursor influenced the overall performance of photocatalyst during photocatalytic degradation of pyrene. Experimental results indicated that the best performance of composites g-C3N4t photocatalyst was prepared from a wet mixture of dicyandiamide and guanidine carbonate precursors at a mass ratio of 1:1 with 43.9 % pyrene degradation under visible light irradiation for 240 mins. The reusability of the best g-C3N4 composites for the photocatalytic degradation of pyrene was also investigated. It was found that the prepared photocatalyst was stable up to five cycles of photocatalysis. Meanwhile, holes (h+) and hydroxyl radicals (·OH) were identified as the primary and secondary dominant reactive species in the photocatalytic degradation through scavenging trapping experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.