Abstract

Abstract Two hematopoietic colony-stimulating factors, granulocyte colony- stimulating factor (G-CSF) and granulocyte-macrophage CSF (GM-CSF), have been shown to accelerate leukocyte and neutrophil recovery after high-dose chemotherapy and autologous bone marrow (BM) support. Despite their use, a prolonged period of absolute leukopenia persists during which infections and other complications of transplantation occur. We collected large numbers of peripheral blood (PB) progenitors after CSF administration using either G-CSF or GM-CSF and tested their ability to affect hematopoietic reconstitution and resource utilization in patients undergoing high-dose chemotherapy and autologous BM support. Patients with breast cancer or melanoma undergoing high-dose chemotherapy and autologous BM support were studied in sequential nonrandomized trials. After identical high-dose chemotherapy, patients received either BM alone, with no CSF; BM with either G-CSF or GM-CSF; or BM with G-CSF or GM-CSF and G-CSF or GM-CSF primed peripheral blood progenitor cells (PBPC). Hematopoietic reconstitution, as well as resource utilization, was monitored in these patients. The use of CSF- primed PBPC led to a highly significant reduction in the duration of leukopenia with a white blood cell (WBC) count under 100 and 200 cells/mL, and neutrophil count under 100 and 200 cells/mL with both GM- and G-CSF primed PB progenitor cells, compared with the use of the CSF with BM or with historical controls using BM alone. In addition, the use of CSF-primed PBPC resulted in a significant reduction in median number of antibiotics used, days in the Bone Marrow Transplant Unit, and hospital resources used. Patients receiving G-CSF primed PBPC also experienced a reduction in the median number of days in the hospital, red blood cell (RBC) transfusions, platelet transfusions, days on antibiotics, and discounted hospital charges. Phenotypic analysis of the CSF-primed PBPC indicated the presence of cells bearing antigens associated with both early and late hematopoietic progenitor cells. The use of CSF-primed PBPC can significantly improve hematopoietic recovery after high-dose chemotherapy and autologous BM support. In addition, the use of G-CSF-primed PBPC was associated with a significant reduction in hospital resource utilization, and a reduction in hospital charges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.