Abstract

The present study was designed to examine changes in glutathione metabolism in the liver of mice as influenced by supplementation of their diet with 1 of 4 antioxidants: butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), vitamin E and selenium. In addition to determination of the acid-soluble thiol levels, 5 different enzymes involved with glutathione utilization and synthesis were measured: glutathione transferase, gamma-glutamyl transpeptidase, selenium-dependent glutathione peroxidase, gamma-glutamylcysteine synthetase and glutathione reductase. All 4 antioxidants produced significant increases in glutathione transferase activity, with BHA and BHT being much more effective than the other two. With the exception of vitamin E, BHA, BHT and selenium all resulted in a slight enhancement in the activity of glutathione reductase as well as in the acid-soluble thiol level. On the other hand, the induction of gamma-glutamyl transpeptidase and gamma-glutamylcysteine synthetase was responsive to only vitamin E and selenium supplementation, respectively. Although the influence of each of these antioxidants in glutathione metabolism appears to be specific and somewhat compartmentalized, the overall impression is that of an increased capacity for glutathione-conjugate formation and recovery of reduced glutathione. These biochemical changes in glutathione metabolism may be relevant to the anticarcinogenic effects observed with BHA, BHT and selenium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.