Abstract

Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a serious pest of cotton that inflicts huge economic losses. Excessive use of chemical pesticides for its management causes environmental pollution and pesticide resistance. Six bioassay methods and ten entomopathogenic fungal strains (EPFs) were evaluated to find out the suitable bioassay method and the most virulent strain(s) for management of B. tabaci under laboratory and polyhouse conditions. The highest tenderness and survival period (> 30 days) of the leaves and increasing trend in nymphal mortality was recorded in a new modified polyhouse bioassay method (NMPBM). NMPBM was found to be effective, simpler, and less labor intensive for evaluating large numbers of EPF strains. Twelve newly isolated EPF strains were characterized based on their morphological and molecular characteristics. The highest whitefly nymphal mortality (at 107 conidia ml−1) was recorded by Beauveria bassiana (Bb)-4511 (95.1%), Bb-4565 (89.9%), and Metarhizium anisopliae-1299 (86.7%) at the seventh day post inoculation. However, the overall bioefficacy index was higher in Bb-4511 (78.1%), Cordyceps javanica (Cj)-102 (77.0%), and Cj-089 (75.4%) than other EPF strains. The lowest values of LC50 and LC90 were with Cj-089 and Bb-4511. The field deployment of effective formulation of these most virulent EPF strains might be helpful for managing B. tabaci populations and CLCuD incidence under insecticide resistance management programs.

Highlights

  • Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a polyphagous pest of more than 900 plant species, and is able to transmit more than 110 plant viruses worldwide (Jones 2003; Sadeh et al 2017)

  • Considering the economic impact and reduced susceptibility to several insecticides, the use of environmentally friendly and sustainable approaches for its control is under research, including integrated pest management (IPM) and insecticide resistance management (IRM) studies

  • The identified sequences were submitted to the National Center for Biotechnology Information (NCBI) GenBank database (Table 2)

Read more

Summary

Introduction

Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a polyphagous pest of more than 900 plant species, and is able to transmit more than 110 plant viruses worldwide (Jones 2003; Sadeh et al 2017). It adapts to new host plants and diverse geographical regions . The range of yield loss due to CLCuD was reported to be from 81.4 to 88.4% in all Chemical control is the dominant management approach for B. tabaci in diverse agricultural production systems.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call