Abstract

For a certain class of ocean models describing the exchange of inorganic carbon between the atmosphere and the surface layer of the ocean as well as between the surface layer and the deep sea the dynamical airborne fraction is evaluated analytically under the assumption that the growth rate of the atmospheric source term (fossil fuel plus net biogenic carbon input into the atmosphere) is slowly variable with time. Each of these models exhibits a certain uptake capacity of the deep ocean which is quantified. Considerations are made as to whether the terrestrial biota are to be regarded as a source or a sink for additional atmospheric CO2 depending on the modelling of the deep ocean. It is shown that a global one-dimensional box-diffusion ocean model with a depth dependent eddy diffusivity K(z) - K(0) exp[-z/z*], with an adjustable parameter set {K(0), z*}, provides a fairly well fit to the prebomb 14C ocean distribution and to an appreciable net biogenic carbon transfer into the atmosphere. The range of future atmospheric CO2 partial pressures is estimated for a given fossil input

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call